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Abstract

Healthcare is incredibly complex. Many scenarios and interactions between patients
and systems or patients and physicians lack closed form solutions. As such, evaluations
of AI on real world healthcare capabilities must mimic such complexity. In this brief, we
first analyze the landscape of healthcare benchmarks on Hugging Face and related reposi-
tories, we also review FDA 510(k) submissions for AI-enabled medical devices. We found
that while multimodal benchmarks that offer realistic, non-synthetic healthcare scenarios
remain limited (approximately <10%), there is a rising share of such benchmarks in recent
years. We then propose four axioms that define what makes a benchmark dataset opti-
mal for AI evaluations: internally valid, externally valid, uncontaminated (independent of
training), and sufficient in sample size for heterogeneous effects testing. Finally, we provide
examples of benchmark datasets we have constructed—spanning dermatology portal Q&A,
nurse narratives with triage, multi-modal oncology staging and tumor board cases, and early
diagnostic/progression datasets in cardiology and oncology.

1 Introduction

Healthcare AI evaluations today lack realism—defined here as multi modality and external
validity to real-world settings. We summarize how the number and type of public benchmarks
have evolved over time. From over 800 Hugging Face–posted relevant healthcare benchmarks,
we found only a smaller subset to have publications (peer-reviewed or not) that describe data
construction and sample sizes, yielding a working set of approximately 270 benchmarks. We
describe this list in Appendix A.

Most early benchmarks were synthetic or text-only, while multi-modal datasets—those com-
bining notes, imaging, and structured data—remain rare. That share is increasing but still
limited. A handful of international datasets exist, yet many reuse overlapping internet data
or translated variants (e.g., multiple language versions of MedQA), risking overlap between
training and test sets. Recently, benchmarks such as [10] represent effort to build a diverse,
non-contaminated benchmark set for healthcare AI covering over 5000 questions by over 250
physicians—although it remains primarily text-only rather than multi-modal and not multi
turn.

This limited external validity in evaluations is a barrier to approving more generative, mul-
titask AI systems in healthcare. Most regulatory clearances (such as FDA 510(k)) of AI tools
today focus on narrowly defined diagnostic applications - often single-modality models eval-
uated in isolated tasks. Even there, validation datasets rarely reflect real-world multi-modal
patient contexts that combine imaging, notes, and longitudinal data. This has likely slowed
some approvals and overall technology penetration.
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Figure 1 shows the count of public healthcare benchmarks by year and modality (multi-modal,
text-only, or other).

• Multi-modal: Uses electronic medical records (EMR) together with imaging, pathology, or
other biometric data—for example, SlideChat-2024 and TCGA-PRAD.

• Text-only: EMR or medical exam datasets without other modalities—for example, HealthBench-
2025, MedQA-USMLE, and MEDS-BENCH.

• Other: Audio transcripts, administrative, or revenue-cycle datasets that can be text-based
but are not clinical narratives.

Figure 1: Benchmarks and evaluations by year and type (one dot per dataset).

Figure 2 shows the cumulative growth of benchmarks. Most early benchmarks were syn-
thetic or text-only, while multimodal datasets—those combining notes, imaging, and structured
data—remain rare (under 10% of all healthcare benchmarks as of 2025). That share is increasing
but still limited.

A handful of international datasets exist, yet many reuse overlapping internet data or trans-
lated variants (e.g., seven language versions of MedQA-USMLE [12]). This overlap means the
test sets may not be fully independent.”
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Figure 2: Cumulative benchmarks and evaluations by year (stacked by type).

Figure 3 shows annual FDA approvals of AI-enabled devices based on 510(k) public summaries.
As of October 14, 2025, 956 out of 1,167 approved AI devices are in radiology, followed by
116 in cardiology. The 2025 data is incomplete due to lag in publication by the FDA. The
pattern in Figure 3 underscores how evaluation strategies have favored controlled, domain-
specific use cases and especially radiology. Many other clinical domains remain without FDA
approved AI tools. Even among approved technologies the task domain is very narrow. A recent
review [29] found that out of nearly 900 FDA-approved AI devices, many lacked broad clinical
generalization—most were tested in narrow or highly controlled environments.

Figure 3: FDA-approved AI medical devices by year and clinical panel (510(k) summaries,
2000–2024). Radiology dominates approvals, followed by cardiology and orthopedics.

A particular failure of vignette-style evaluations is also the lack of patient physician inter-
actions in the real world. For example, healthcare provision that is neither driven solely by
provider knowledge nor just by demand (patient trust in the provider or financial means), but
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is bilateral and mediated by the patient’s belief in the quality of the provider and the physicians
belief in what is holistically best for a patient. Recent work building tumor-board style bench-
marks has leaned on synthetic vignettes [3], and large-scale Q&A sets have even transformed
detailed NEJM cases into automatic evaluation items [9]. Unfortunately, patients in the real
world do not present as neatly curated vignettes or fully elaborated NEJM cases. In a random-
ized experiment on physician training in India, Banerjee et al. [4] document that vignette-style
assessments failed to update knowledge: “Among those who ‘know’ the correct treatment, wide
variation in ‘do.’” Real-world care is not only about textbook recommendations; it is inter-
twined with patient preferences, incentives, and constraints. Ethnographic accounts [6, 20, 21]
describe low-trust environments where clinical encounters resemble negotiation: patients may
resist costly tests, and clinicians anticipate those reactions when forming recommendations.1

Thus, beyond “what do medical textbooks recommend,” credible healthcare evaluations must
consider how care is practiced in the real world.

2 Benchmark Typology and Internal vs External Validity

We now summarize categories of evaluations from least advanced to most advanced. Figure 4
illustrates a typology of benchmark designs arranged by their source realism and evaluation
setting. The top row (A–C) shows the main spectrum of benchmarks—from controlled offline
environments to fully deployed real-world evaluations—while the second row (D–E) further
breaks down the offline group into expert-constructed and user-generated variants. This is
similar to the four levels of healthcare AI evaluations proposed by Singhal [22]. Much like other
medical care technologies (e.g., pharmaceuticals), AI technology would benefit from randomized
controlled trial (RCT)-style assessments that can capture the true effectiveness of these tools in
the real world. However, even traditional RCTs face important limitations in external validity
[7]. Despite interest in more randomized clinical trial–style evidence with clean treatment and
control arms, testing new or risky tools on the broader population is often not feasible. In
addition, trial recruitment is time-consuming and integration within health systems may suffer
from complier or sign up bias. As such, there is clear interest in developing quasi-experiments
or evaluations from existing datasets.

A: Offline (Expert-
Generated
Prompts)

Curated Q/A or

synthetic tasks; high

control, low realism

B: Offline (User-
Generated Data)
Real user input; expert-

annotated outputs;

moderate realism

C: Online / Real-
World Evaluations
Deployed systems, work-

flow or quasi-experimental

data; high realism

D: Expert-
Constructed Setting
Expert-authored prompts

or rubrics; judged

by domain experts

E: User-
Generated Setting
Authentic user input;

expert-judged out-

puts (e.g., triage, Q/A)

moving to RCT

style evidence

Verification becomes harder as realism increases; offline bench-

marks allow stronger control but weaker generalization.

Figure 4: Benchmark typology (A–E) organized by evaluation setting and realism.

1Example from (The Fallen Idol: Mistrust and Medicine in India, 2020): “If I tell the patient straightaway
that they need tests costing 10,000 rupees, they will run away and not return; so I start with medicines and only
later ask for tests.”
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3 Axioms of Credible Benchmark Data

Axiom 1
Internal validity
Identify the causal quan-
tity within the benchmark
sample.

Axiom 2
External validity
Generalize to target set-
tings; desirable but not
strictly necessary.

Axiom 3
No contamination
Independence from train-
ing is part of ensuring
credible internal validity.

Axiom 4
Sufficient sample size
Power for subgroup and
rubric-level analyses.

Internal validity is necessary. External validity is not required

for learning about the study context. Lack of contamination is

a component of achieving internal validity.

Figure 5: Axioms at a glance: Internal validity is necessary; external validity is desirable; non-
contamination supports internal validity.

4 Description of Axioms of Credible Benchmark Data

We define four axioms to guide the curation of benchmark datasets for AI evaluation. We
discuss each axiom and give examples of when its breached.

Axiom 1: Benchmark Population is not Selected on Outcomes. The benchmark
population must not be systematically more or less likely to exhibit higher or lower outcomes
on the AI evaluation than the non-benchmark population. In other words, individuals chosen
for benchmarking should be randomly drawn with respect to evaluation difficulty or outcome
likelihood. This Axiom may not be required if for example particularly difficult cases are
desirable. An insidious form is when the benchmark population is more likely to perform better
in an evaluation than the wider population. An example of this is minorities (e.g., race Black)
tend to have lower-fidelity medical records, which make future predictions of their outcomes
harder [27]. High-share Black is also less attainable in rare disease therapies, skewing curated
benchmark datasets toward easier modal race groupings.

Formally, let Si ∈ {0, 1} indicate whether case i is included in the benchmark (Si = 1) or not
(Si = 0). Let Y ⋆

i denote the intrinsic per-case evaluation outcome (e.g., correctness indicator
or continuous score that is a weighted average of several factors) that the model would achieve
on case i, regardless of whether i is selected.

The benchmark reports:
µbench ≡ E[Y ⋆

i | Si = 1],

while the target population performance is:

µpop ≡ E[Y ⋆
i ].

The benchmark is unbiased for population performance when selection is independent of per-
case difficulty:

Y ⋆
i ⊥ Si (or, more generally, Y ⋆

i ⊥ Si | Xi),

so that µbench = µpop
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Concrete example (classification accuracy). Consider an AI system that identifies lung
cancer on CT scans. Define Y ⋆

i = {model correctly classifies case i}, a 0/1 per-case correctness
indicator. Inclusion in the benchmark (Si = 1) does not change whether the model would be
correct on case i; it only determines whether Y ⋆

i is observed. If the benchmark over-represents
“easy” scans (e.g., high-quality images with large, well-demarcated lesions) and under-represents
“hard” scans (e.g., motion artifacts, subtle nodules, complex comorbidities), then:

E[Y ⋆
i | Si = 1] > E[Y ⋆

i ],

inflating reported performance. Axiom 1 requires that selected cases be no easier or harder, on
average, than non-selected cases with respect to Y ⋆

i .
Internal validity asks whether we are correctly identifying the causal impact of the model

or intervention within the context of the benchmark sample. Factors that impact internal
validity include omitted-variable bias (missing data), measurement error in labels, and reverse
causality. A form of reverse causality is look-ahead bias, in which information from the future
or from the model’s target output leaks into predictors. In general, internal validity is
more important than external validity. If an evaluation is internally invalid, we
have learned nothing; if it is internally valid but externally invalid, we have at least
learned something about our specific context.

1 2 3 4 5 6 7 8 9
0

5 · 10−2

0.1

0.15

0.2

Likelihood of High Evaluation Score µ

D
en

si
ty

Real-world Data Benchmark

Figure 6: Distribution of cases by likelihood of high evaluation score (µ). Benchmark and real-
world data are similarly distributed, satisfying Axiom 1.

Axiom 2: External Validity and Realistic Context. Benchmarks should reflect real-
world clinical workflows and multi-turn events rather than scripted or artificially generated
interactions. Data realism—grounded in real-world records—enhances both external validity
and clinical relevance.

Assuming internal validity holds (see Axiom 1), external validity concerns generalizability:
whether causal relationships or evaluation metrics estimated on the benchmark sample can be
transported to other populations or settings. Even when internal validity holds, external validity
may fail if the benchmark cohort is not representative of the broader population of intended
AI tool users, or if the benchmark context is atypical (e.g., single-institution data, restricted
demographic strata, or curated subsets of easy cases).

A benchmark attains external validity when, across both observable and unobservable co-
variates, the joint distribution of characteristics in the benchmark cohort closely matches that of
the real-world population. One particular covariate is the likelihood of exposure to the AI tool
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in the real world if released. A very similar context is the gap between efficacy and effective-
ness that is evident in pharmaceutical testing: about 58% of Phase II trials fail in Phase IIIas
populations broaden (see [25]).

Graphically, this can be shown as:

−3 −2 −1 0 1 2 3

Covariate (AI-tool exposure score)

D
en

si
ty

Real-world population

Benchmark cohort

Figure 7: Benchmark representativeness: the distribution of covariates in the benchmark cohort
should mirror the real-world population to ensure external validity.

While Axiom 2 establishes the representational foundation for external validity—ensuring
the benchmark captures the same distribution of contexts as the real world—Axiom 1 comple-
ments it by ensuring performance independence, i.e., that benchmark inclusion is uncorrelated
with evaluation difficulty or outcome likelihood.

Axiom 3: Independence of Training and Benchmark Data i.e No Contamination.
Contamination between training and benchmark data parallels the problem of serial correlation
in panel data, where repeated observations on the same entities introduce dependence.

In a basic linear model, this is seen when estimating:

healthit = β doctor visitsit + εit,

with i indexing patient and t time. Increasing the number of time periods per patient does
not proportionally increase the true sample size because the errors εit are correlated within
i. Analogously, in medical data, repeated records for the same patient, provider, or hospital
system can produce artificially high apparent performance if overlapping information leaks
between training and benchmark sets.

Degrees of Contamination. Following Xu et al. [26], there are degrees of benchmark
contamination that can be defined. From least to most extreme. We provide clinical examples
of how this would occur:

1. Semantic level Contamination. Contamination due to content on the same topic or
by the same upstream source. This form of contamination is common and highly likely
in healthcare. Clinical practice and note-taking styles are often serially correlated across
physicians and there is a small number of doctors within specialties. Example: with only
about 10,000 nephrologists in the U.S., overlap in practice or diagnostic patterns can inflate
measured performance across training and benchmark sets. This is a similar concept to
spatial correlation, where a group of records are more correlated within geography due to
the network of physicians servicing that geography.

2. Data level Contamination. Partial exposure of benchmark data without labels—such
as unlabeled images, free-text notes, or patient sequences later used in evaluation. Ex-
ample: Data from The Cancer Genome Atlas (TCGA) used in model pretraining without
labels can later reappear in labeled form within downstream benchmarks (e.g., [28]). The
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evaluation accuracy then is inflated by the co-linearity between labeled and unlabeled
exact scans.

3. Label level Contamination. The most severe form of contamination occurs when
benchmark data, including labels, are fully exposed during training. Example: patients
and their exact medical records appear in both the training and evaluation sets, often
due to the absence of a universal patient identifier across data vendors providing non-
deterministic IDs. This issue has been partially mitigated through the use of hashed
patient identifiers from high fidelity probabilistic attributes (e.g., last name, first name,
date of birth, and gender) or deterministic attributes (eg: social security numbers). If these
identifiers are tracked across datasets in training vs benchmarking patient separation can
avoid this type of contamination.

More broadly, contamination has grown increasingly complex as models acquire reasoning
and retrieval capabilities. Recent research by Kapoor et al. [13] shows that world models
shows that world models can recognize benchmark questions and directly retrieve answers
from the web or public repositories such as Hugging Face—effectively short-circuiting
genuine evaluation. The figure below provides an illustrative example of how medical
records under each level of contamination would appear.

Note A (Dr. Kerrigan
V.)

“I had the pleasure of seeing
Brendyn Sloman. . .
. . . for follow-up of heart
failure and atrial fibrilla-
tion.”

Signature: – K. Van-
skiver, MD

Note B (same doctor
and phrasing)

“I had the pleasure of seeing
Caleb Sloane. . .
. . . for follow-up of heart
failure and ventricular ar-
rhythmia.”

Signature: – K. Van-
skiver, MD

Same writing style, phras-
ing, physician signature.

Note C (Unlabeled)

De-identified clinical text
only.

“Restarted Eliquis; repeat
labs next week.”

No structured labels or
metadata present.

Note D (Labeled Ver-
sion)

Same text with structured
tags.

Text: “Restarted Eliquis;
repeat labs next week after
LOINC 12345”

Structured fields (shown by
arrows) — only the bench-
mark has labels, but identi-
cal data used in training.

Label:
Medication

Label:
Lab (LOINC)

Note E (Training Copy)

“I had the pleasure of seeing
Brendyn Sloman. . .
. . . recommended for trilam-
inate trial.”

Note F (Benchmark
Copy)

“I had the pleasure of seeing
Brendyn Sloman...
Seen in both training and
evaluation →
Label-level contamina-
tion.

Increasing contamination
severity as the two sets
become more correlated

Figure 8: Illustration of contamination pathways across semantic, data, and label levels. Top
row: stylistic (semantic) similarity; middle row: data-level exposure with and without structured
labels; bottom row: label-level duplication of identical notes.

Axiom 4: Sufficient Sample Size for Detecting Heterogeneous Effects. Small bench-
mark datasets do not detect meaningful differences across groups or subpopulations. A remedy
often proposed is to treat each graded criterion within a case as a data point. Because these crite-
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ria are correlated, they should be treated as multiple outcomes. Testing many outcomes inflates
the familywise error rate (FWER). A standard step-down correction is the Holm–Bonferroni
procedure [11]:

Often described as ifm is the number of hypothesis tests with ordered p-values p(1) ≤ · · · ≤ p(m).
we test sequentially for i = 1, . . . ,m using thresholds

p(i) ≤ α(i) where α(i) =
α

m− i+ 1
.

and we reject at step i only if all earlier hypotheses have been rejected. As m grows (the num-
ber of criteria tested in the benchmark), each effective significance level α(i) becomes smaller,
implying that reliable detection of heterogeneous effects requires larger sample sizes when many
rubric criteria (or subgroups) are tested.

This in particular is a silent mode of failure in most benchmarks and despite the well rooted
ideas of statistics in machine learning, adding error bars to AI evaluations—something that
should have been standard practice—had to be explicitly emphasized in 2024 [17] after many
evaluations were published without any form of statistical significance metrics.

A secondary component of axiom 4 is standard error clustering, when benchmarks contain
non independent data for the same setting or patient, the standard errors are then correlated.
eg: MedQA in english and MedQA in french are the exact questions in different languages.
Similarly, often from the same EMR corpora researchers will generate tasks that assess factual
recall from structured text (e.g., “What drug was prescribed?”) and tasks that assess reasoning
across values (e.g., “why was this drug prescribed?”) . The correlation across data points if not
accounted for systematically shrinks the standard errors and leads to statistically significant
but erroneous results [1].

The discussion above sheds light on some of the common limitations of benchmark datasets
today. We now describe a suite of new benchmark datasets offered by Protege in collaboration
with health systems and domain experts.

5 Curated Datasets for Benchmarks

We curated real-world, multimodal, diverse, and longitudinal cohorts that are fully
held out from any current or future training datasets. Each benchmark dataset is separated
using a deterministic, patient-level hash derived from last name, first name, date of birth, and
gender—to minimize contamination across training and evaluation sets. All benchmark datasets
include a sufficient number of samples to enable subgroup-level statistical power. Except for
the committee-style oncology diagnostic benchmark, each cohort includes no fewer than 2,000
patients and can scale to tens of thousands. This emphasis on sufficient sample sizes is to
support a. multiple hypothesis testing across various rubric attributes (since rejection P value
thresholds must be lower with multiple hypothesis testing) and b. analysis of heterogeneous
effects within smaller patient subgroups.

4.1. Multimodal Cancer Journey- Varied

Description: Dataset contains oncology and non-oncology notes, radiology reports, pathology
reports, NGS test results (PDF) when available, whole-slide pathology images, and DICOM
imaging pre-, during-, and post-treatment. Mortality outcomes and registry tables (approxi-
mately 18 variables) are included.
Sample size: 2,500 patients across lung and breast cancer. Held-out identifier: deter-
ministic hash of (last name, first name, DOB, gender).
Purpose: Oncology patients generate over 250,000 text tokens (approximately 1M characters)
per care journey. High-accuracy AI tools are needed to summarize longitudinal records, extract
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structured staging data, and integrate with EMR text information from PDF reports, radiol-
ogy imaging and pathology results. Cancer diagnosis is also a task that is slowed down by
information inertia (the volume of background on the patient).

Problem AI would Solve:

• Diagnostic intervals from initial suspicion to definitive staging can extend up to 180
days in real-world settings due to workflow and scheduling delays (Patel et al., 2023).

• Staging quality varies across community sites, and clinicians face competing workload
pressures that affect accuracy and timeliness.

Input: Pathology (both reports and images) and radiology (both reports and images),
genetic testing report, biomarker status, oncology and non oncology notes.
Output: Structured registry fields (primary site, histology, stage, grade), diagnosis
reached, treatments offered and executed, long term outcomes (hospice, mortality, re-
mission, metastasis etc

Illustrative Example of the Multimodal Cancer Journey Benchmark Dataset:

Early mammogram
screening
20930 days since birth

Suspected tumor
20958

Follow-up mammogram
20960

Biopsy
20961

Pathology results (di-
agnosis week)
20961 days since birth

Genetic testing
20974 (+13 days after pathol-

ogy)

Surgery
21010

Treatment start
21020

Follow-up visits
21200

Clinical endpoints
21508 (Age ≈ 59)

F
o
ll
o
w
-u
p

p
er
io
d

2
0
9
7
0
→

2
1
5
0
8

d
a
y
s

Figure 9: Timeline for a female breast cancer case showing screening, suspicion, imaging, biopsy,
pathology (20961), genetics (+13 days), surgery, treatment, follow-up, and clinical endpoints.
The patient is followed from 20970 (age ≈ 57) to 21508 (age ≈ 59) days since birth.
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4.2 Multimodal Cancer Journey plus Physician Conference - Complex Cases

Description: Case summaries integrating notes, pathology, genetics and imaging to evaluate
complex oncology cases. These patients are typically metastatic liver, lung and brain patients
eligible for clinical trials.
Sample size: 300 cases. Held-out identifier: deterministic hash of (last name, first name,
DOB, gender).

Problem AI would Solve:

• oncologists tumor case reviews see 15–50 cases per week, often allocating only 2–8
minutes per case (Lai et al., 2023).

• Digital workflows can reduce preparation burden (Dong et al., 2024). For example in
the above dataset we found—up to 6,800 PDFs for 168 patients. The volume of PDFs
and documents that have to be reviewed slows patient discussion in the conference and
treatment progression.

Input: Longitudinal EMR notes, pathology notes, radiology notes, radiology and pathol-
ogy images, genetic testing, case summary ahead of meeting, doctor level recommendation
(>2 physicians in discussion and up to 6).
Output: Suggested management plan; final summary, clinical trials suggested.
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Illustrative Example of the Multimodal Cancer Journey plus Physician Conference-
Complex Cases Benchmark Dataset:

EMR Records
Notes, medications, vitals, visit history.

Pathology Reports
Histology, molecular markers, digital slides.

Radiology
CT/MRI with reports.

Genetic Testing
exampl:e MGMT (unmethylated), IDH

(wildtype), FGFR3-TACC3 fusion positive,

etc.

Consolidated Case Summary
typically a paragraph read out in the meet-

ing

Case Discussion
30-min virtual meeting reviewing ∼3 cases.

Physicians review slides, imaging. Audio

transcript is available or chat comments if

they confer asynchronously.

Final Consensus
Recommendations for surgery, ongoing ther-

apy, and clinical trial eligibility.

Figure 10: Dataset flow: multimodal inputs (EMR, pathology, radiology, genetics) are inputs,
discussions by physicians and decision are outputs
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4.3 Dermatology Portal Q&A Benchmark Dataset

Description: Photo + text triage from dermatology patient portal messages paired with EMR.
Evaluates AI triage accuracy in dermatology settings.
Sample size: 10,000 bundles of Question, Answer and EMR. Held-out identifier: deter-
ministic patient hash.

Problem:

• Dermatology portal messages are among the most frequent across all specialties (AMA,
2024).

• Median dermatology appointment wait times range from 13 to 30 days depending on
insurance status, increasing patient reliance on asynchronous portals (Ramaswamy et
al., 2024).

• Providers often depend on EHR context beyond images alone to respond effectively.

Input: Patient portal messages with photos and structured metadata.
Output: Triage with rationale. Physician responds with an answer or an invite to visit
the clinic. When a visit occurs the medical record of the visit (EMR notes) are captured.
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Illustrative Example of the Dermatology Portal Q&A Benchmark Dataset:

EMR Context (available from prior visit notes)
Prior clinic summary, meds/allergies, problem list, derm history, recent labs.

Patient Message with Image Attachment
Sent: 1/28/2025 7:47:40 PM MST Subject: RE: Skin update
Body: “rash is spreading to more of my body (arms and legs). I wasn’t able to
get Benadryl until tonight but just took it and also bought Benadryl cream that I
put on my chest. We’ll see if that helps.”

Physician Triage
Paths:

• Ask clarifying questions (onset, itch/pain, fever, new meds).

• Direct to ER if red flags.

• Schedule follow-up visit (in-person or telederm).

Follow-up Visit (if booked)
Prior notes auto-retrieved; new image captured if available; brief ROS and skin

exam documented.

Figure 11: Dermatology QA flow: EMR context available → portal message → physician triage
→ follow-up visit if booked.

4.4 Nurse Narratives and Triage Benchmark

Description: Telephone narratives between nurse and patient (recorded by the nurse in the
EMR), with relay to MD and decision from MD. EMR notes pre and post patient questions are
bundled in.
Sample size: > 1 million conversation narratives between nurse and patient, with physician
responding in the EMR and followup recorded. Held-out identifier: deterministic patient
hash.
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Problem:

• Major healthcare systems report millions of portal messages annually, rising sharply
after the pandemic (Crotty et al., 2020); (AMA, 2024).

• Response quality varies, and AI-based triage can reduce burden.

Input: Patient messages and relevant pre message EHR data.
Output: response to patient, next steps taken and EMR notes if visit occurs as a result
of the question.

Illustration of Nurse Narrative (from call with patient) and MD Triage Bench-
mark

EMR Context (available before portal message)
Problem list: Essential hypertension; ankle edema (recent).
Meds (recent): Amlodipine (Norvasc) stopped due to swelling; ACEi previously tried.

Care plan notes: Call if diastolic > 88mmHg; home BP log requested by PCP.

Patient Messages (via portal)
2023-11-22 12:11 — “Message from T. Henderson (Self). Stopped Norvasc for swelling;
BP today 172/101. Coming down with rest. Should I restart or do something else?”
2023-12-11 12:12 — “Message from K. Wasyl. Home BP 159/93; pulse 69. Was told
to call if diastolic > 88. Requesting advice. Call-back: (XXX) XXX-XXXX.”

2023-12-22 12:12 — “Message from T. Henderson. Home BP 121/83 on new meds;

PCP requested a series of readings. Sending numbers.”

Nurse Triage & Safety Screen
Immediate safety: If SBP ≥ 180 or DBP ≥ 120 or red flags (chest pain, neuro deficit,
dyspnea) ⇒ ED/911.
Guidance: BP recheck after rest; avoid self-restarting amlodipine due to prior edema;
confirm current regimen and adherence.

2024-01-25 12:01 — “Please schedule an add-on repeat BP check. If SBP remains

> 160 or DBP > 100, consider medication adjustment vs. vascular referral.” (Visit invite

sent)

EMR Context (available after visit invite)
Appointments: Add-on nurse BP check scheduled.
Data pulled for evaluation: Latest med list, home BP series (11/22–12/22), vitals from
prior visits, renal panel, edema history.

Next steps: In-clinic BP verification; med titration pathway vs. referral; follow-up mes-

sage to patient with plan.

Figure 12: Nurse Narratives benchmark flow: EMR context is available before the message, a
series of patient portal messages arrive about home blood pressure, nurse triage to MD who
invites patient for a visit, and updated EMR context becomes available after the visit with
the new medication decision reached. These are narratives because some of the communication
occurs on the phone and is described by the nurse to an MD in a note. The first person
communication is occurring between the nurse and the MD about the patient.

Additional Early Diagnostic and Progression Benchmarks

In addition to the oncology and triage benchmarks described above, we have curated three mul-
timodal benchmark datasets focused on early diagnosis and disease progression. Each dataset
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is held out using deterministic patient-level hashes and supports subgroup-level evaluation for
robustness and generalization.

• Acute Myocardial Infarction (AMI) Prediction Benchmark (Cardiology) — 2500
patients. Predicts the likelihood of major adverse cardiac events such as acute myocardial
infarction using multimodal cardiology inputs including EKG PDFs or CTA scans, and lon-
gitudinal EMR and lab results.

• Breast Cancer Progression Prediction Benchmark (Oncology) — 2000 patients.
Uses pathology slides, genetic biomarkers, and EMR data to predict disease progression and
therapy response.

• Early Lung Cancer Detection Benchmark (Radiology) — 10,000 longitudinal imaging
series. Links multiple low-dose chest CT scans per patient across years to predict lung cancer.
Multiple Lung Rads paired with EMR over the years and final ICD C34 status.

Conclusion

In this overview, we documented four main axioms for benchmarking datasets that we believe
accelerate AI evaluations in healthcare. We caution that not all four axioms must always hold,
and emphasize that internal validity is far more important than external validity. In other
words, uncontaminated benchmarks that are not selected to skew evaluation outcomes take
much higher priority than benchmarks designed to capture the global patterns of all patients
receiving care.

We also note that the very nature of accessible data—whether used for training or bench-
marking—heightens the risk of contamination. As researchers, we rely on the data available
to us, which often results in limited datasets or a niche cohort of sites across available data.
This selection bias in data participation threatens internal validity and increases the risks of
contamination. Addressing these limitations should be a key focus for data entities aiming to
advance the AI frontier in benchmarks and evaluations.

Finally, we provided a list of several new datasets available for evaluation that are held
out from training data. These datasets span oncology, cardiology, dermatology, and general
patient triage. All curated datasets are multimodal and multi-turn, featuring realistic, non-
synthetic clinical encounters. Our future focus is to expand evaluations beyond traditional
question–answer formats, applying the four axioms discussed to specialized clinical domains.
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Appendix: Filtered Benchmarks Table

Table 1: Hugging Face–filtered benchmarks with samples and papers by modality and year.

Name Year Modality Label

MedQA USMLE 2020 text
MedMCQA 2022 text
Asclepius Synthetic Clinical Notes 2023 text
Augmented Clinical Notes 2022 text
Clinical Synthetic Text LLM 2023 text
Multilingual Medical Corpus 2024 text
Medical Multimodal Evaluation Data 2024 text plus images rad
ClusTREC-Covid 2024 text
SlideChat 2024 text plus images rad
Medical O1 Reasoning SFT 2024 text
Medical QA (MTEB) 2022 text
MediQ AskDocs Preference 2025 text
II Medical Reasoning SFT 2025 text
DiagnosisArena 2025 text
ReasonMed 2025 text
Drug Approval Prediction 2025 text
n2c2 2014 De-identification 2014 text
Hallmarks of Cancer 2016 text
Long-COVID Classification Data 2022 text
i2b2 2010 Relation Extraction 2011 text
BIOSSES 2017 text
BioASQ 7b – Factoid 2019 text
BioASQ 7b – Yes/No 2019 text
BioASQ 7b – List 2019 text
CORD-19 (Kaggle) 2020 text
CovidQA-MediSYS 2020 text
CovidQA-FAKTA 2020 text
Covid19-QA 2020 text
EmoryNLP Covid-19 Discourse 2020 text
MedDialog (Chinese) 2020 text
CovidDialog (Chinese) 2020 text
CovidDialog (English) 2020 text
COVID-19 Twitter (MediRet) 2020 text
CARES (Catalysis AI COVID-19) 2020 text
COMETA 2020 text
PACT-1 2019 text
PACT-2 2020 text
PACT-3 2021 text
PACT-4 2022 text
PACT-5 2023 text
PACT-MS 2023 text
PACT-XS 2023 text
PACT-XSD 2023 text
PACT-D 2023 text
PACT-Misc 2023 text
PACT-Domain 2023 text
PACT-Language 2023 text
PACT-Clinical 2023 text
PACT-Style 2023 text
PACT-Task 2023 text
MedDialog (English) 2020 text
MedNLI 2018 text
MedicationQA 2021 text
LiveQA-Med 2017 text
MEDIQA-AnS 2019 text
MEDIQA-RQE 2019 text
MEDIQA-QA 2019 text
PubMedQA 2019 text
BioClinicalQA 2021 text
HEAD-QA (En) 2019 text
HEAD-QA (Es) 2019 text
MEDQA 2018 text
MedMCQAI 2023 text
MedEval 2023 text

Continued on next page
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Name Year Modality Label

MedQA (Chinese) 2017 text
WebMedQA 2018 text
MedQA (Simplified Chinese) 2017 text
MedQA (Traditional Chinese) 2017 text
CMB 2020 text
MedQA (Vietnamese) 2023 text
MedQA (French) 2023 text
MedQA (Spanish) 2023 text
Fictive Medical Reports & Summaries (French) 2023 text
Chinese Biomedical NER 2023 text
MRI-sym2 2023 text plus images rad
MedSynth 2023 text
Asclepius Synthetic Clinical Notes (v2) 2023 text
X-Ray Chest Images 2023 text plus images rad
TREC Clinical-Trials (TREC-PM 2019) 2019 text
Breast Cancer Ultrasound Classification 2023 text plus images rad
MedSum 2023 text
MEDIQA-QA (BigBio) 2019 text
CodiEsp Corpus 2020 text
SPACCC Sentence Splitter 2018 text
Italian Parkinson’s Voice & Speech 2019 other
MedExQA 2023 text
Biomedical CPG-QA 2023 text
PubMed QA (chungimungi) 2023 text
XLingHealth 2023 text
Refined TCGA PRAD Pathology Dataset 2023 text plus pathology
Enhanced MedMNIST 2023 text plus images rad
PubMed (cyrilzakka) 2023 text
VERI-Emergency 2023 text
Region Hovedstaden Clinical Text 2023 text
CleanPatrick Dermatology 2023 text plus images rad
MMLU-Medical (MedGENIE) 2023 text
Clinical Trial Texts (Rosati) 2023 text
HealthVer Entailment 2023 text
Eka Medical ASR Evaluation 2023 other
MedRescue 2023 text
Pulmonary Disease Airway & Lung Function 2023 other
PharmaER.IT 2023 text
Thyroid Ultrasound Images 2023 text plus images rad
MedicalQuestions (fhirfly) 2023 text
ICD10GM-Alpha 2023 text
FOMO MRI 2023 text plus images rad
Abdomen MRI 2023 text plus images rad
ACL X-ray 2023 text plus images rad
Axial MRI 2023 text plus images rad
Gynecology MRI 2023 text plus images rad
X-ray Rheumatology 2023 text plus images rad
COVID-19 HEALTH Wikipedia (FrancophonIA) 2021 text
PubMedVision 2023 text plus images rad
IMed 361M 2023 text
MedMentions NER 2019 text
Psychology-Therapy 2023 text
Healthcare Disease Knowledge 2023 text
BASED-FDA 2023 text
Mental Health Chatbot 2023 text
MedS-Bench 2023 text
Medicare COVID-19 Hospitalization Trends 2020 other
Medicare Inpatient Hospitals (Provider/Service) 2022 other
Medicare Outpatient Hospitals (Geography/Service) 2022 other
Medicare Physician & Practitioner (Provider) 2022 other
Weekly Lab-Confirmed RSV Hospitalization 2022 other
SNOMED CT Hierarchy-Transformers 2023 other
Vietnamese Medical QA 2023 text
TREC-COVID Top-20 Gen Queries 2020 text
Genomics Long-Range Benchmark 2023 text
IRDS ClinicalTrials (TREC-PM 2017) 2017 text
IRDS ClinicalTrials (TREC-PM 2018) 2018 text
IRDS ClinicalTrials (TREC-PM 2019) 2019 text
Evidence Inference – Treatment 2020 text

Continued on next page
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Name Year Modality Label

Belgian Entrance Exam (Physician) 2023 text
Race-Based Medicine Questions 2023 text
Chest Xray Classification 2023 text plus images rad
Dermatology-QA 2023 text
ICD Dx Description Map 2023 text
ICD-11 QA 2023 text
Taiwan Epilepsy Guidelines QA 2023 text
Clinical Trials (louisbrulenaudet) 2023 text
RCL Breast Cancer Biopsy 7500 2023 text plus pathology
RCL Lymph Node Biopsy 100K 2023 text plus pathology
MEDAL (McGill-NLP) 2023 text
CORD-19 2020 text
Health Advice 2023 text
Medical Meadow Flashcards 2023 text
MEDIQA (2019 Challenge) 2019 text
WikiDoc (Medical Meadow) 2023 text
MedGUIDE-MCQA-8K 2023 text
MedRAG PubMed 2023 text
MedRAG Textbooks 2023 text
TherapyTalk (MentalAgora) 2023 text
Pneumonia X-ray 2023 text plus images rad
CDS-BART Vaccine Degradation 2021 text
CoT Reasoning – Clinical Diagnosis 2023 text
MedWiki (mvarma) 2023 text
COVID Fake News (nanyy1025) 2021 text
Open Patients 2023 text
MedNurse-QA 2023 text
Hospital Financial Reasoning 2023 text
MedBench Resident 2023 text
Medical-Gen-VQA 2023 text plus images rad
ICD10 e5 Small v2 Embeddings 2023 other
SA-Med2D-20M (OpenGVLab) 2023 text plus images rad
m1-MedBench (OpenMedical) 2023 text
Clinical Persian QA I 2023 text
Clinical Persian QA II 2023 text
CT-ScanGaze 2023 text plus images rad
MedSSS-data 2023 text
PMC-Treatment 2023 text
MedMNIST (mirror) 2021 text plus images rad
Recurv Clinical Dataset 2023 text
Recurv Medical Dataset 2023 text
BioLeaflets Biomedical NER 2023 text
SFT Dataset (medical) 2023 text
DisEmbed Symptom–Disease v1 2023 text
Thai Depression (SEACrowd) 2023 text
Medical Speech Transcription & Intent 2023 other
MedKGent-KG 2023 other
HealthBench 2025 text
MedKGent-KG 2023 other
Brain Tumour MRI Scan 2023 text plus images rad
MACCROBAT Biomedical NER 2023 text
Synthetic Chest X-ray 2023 text plus images rad
Synthetic Mammography 2023 text plus images rad
Biomedical EN–FR Corpus 2022 text
ClinicalQA (SNUH) 2023 text
CMS Federal Medicare Data (stigsfoot) 2023 other
Greengenes 2013 other
Real Clinical Cases (TCM Doctors) 2023 text
Synthetic Clinical Notes (Embedded) 2023 text
PMC-Patients-ReCDS 2023 text
MedCT Clinical Notes 2023 text
Mental Health FAQ 2023 text
Internal Medicine Binary Questions 2023 text
Pediatrics Questions 2023 text
MedXpertQA 2023 text
MedReason (UCSC-VLAA) 2023 text
MedTrinity-25M 2023 text
Medical Dialog (UCSD) 2021 text
Chest CT Images 2023 text plus images rad

Continued on next page
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Name Year Modality Label

Turkish Hospital Medical Articles 2023 text
Turkish Medical Articles 2023 text
Medical Masks Image Dataset 2020 other
Vietnamese Healthcare 2023 text
HNSCC Multi-Omics (Gene Networks) 2023 other
Biomedical Lectures (ENG) v2 2023 text
BTCV-CT-as-video (MedSAM2) 2023 text plus images rad
LLD-MMRI (MedSAM2) 2023 text plus images rad
CT DeepLesion (MedSAM2) 2023 text plus images rad
RVENet (MedSAM2) 2023 text plus images rad
Dental-2.5k-Instruct 2023 text plus images rad
DrugMap Ligandability 2023 text
Pharmacology LLM Test Set 2023 text
PMC Patients 2023 text
Alpaca PubMed Summarization 2023 text
Medical-O1-Reasoning SFT (Thai) 2023 text
Patient–Doctor QA (ZoneTwelve) 2023 text
MedMCQA 2022 text

Note. Non-exhaustive list of filtered benchmarks from Hugging Face with clear samples and papers by
modality and year.
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